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Three-dimensional numerical integrations of the Navier-Stokes equations have been 
made for parameters corresponding to some previous laboratory studies of transverse 
flow past obstacles in a rotating fluid. In the laboratory experiments the character of 
the flow was found to depend upon the parameter YL = L/DR, where R is the Rossby 
number Uo/slzL, L is the horizontal scale of the obstacle, D the depth of the fluid, Uo 
the flow speed and R the angular rate of rotation, For YL $ 1 the flows appeared two- 
dimensional and our results confirm the applicability of this assumption in previous 
asymptotic theories. For YL - 1 a leaning disturbance is produced which can look 
columnar in character (‘leaning Taylor column’) and our results enable a detailed 
examination of this structure. To clarify the importance of nonlinear effects in the 
leaning Taylor column we compare them with the predictions of a linear inertial wave 
theory. This theory is valid only for small obstacle slopes but provided it includes the 
effects of viscosity it gives good predictions of the amplitude of the disturbances. The 
main difference between the viscous linear theory and the Navier-Stokes solution is 
a flow asymmetry of nonlinear origin. The role of viscosity is important but passive 
in the sense that it does not alter the flow structure near the obstacle but progressively 
dissipates the disturbance with increasing distance from the obstacle. This viscous 
confinement of the disturbance makes the lee wave flow structure look columnar and 
is important in allowing some laboratory flows to seem unbounded. The results also 
confirm the conjecture of Mason (1975, 1977) that the large drag forces occurring in 
these flows are due to inertial wave radiation. 

1. Introduction 
Previous work on transverse flow past obstacles in a rotating fluid has largely 

centred on the study of ‘Taylor columns’. For sufficiently small values of Rossby 
number ( R  = U / O L ,  where U is the flow speed, s1 the rotation speed and L a typical 
horizontal length) the rapid rotation constrains the motion about the obstacle to be 
two-dimensional (the Taylor-Proudman theorem: Proudman 1916; Taylor 1923). 
The flow past the object can then be divided into two regions separated by an imaginary 
cylinder with axis parallel to the axis of rotation, which circumscribes the object. 
Outside this cylinder (a ‘Taylor column’) the flow behaves as if it were encountering 
a solid cylinder. The exact conditions for a Taylor column to form have been discussed 
by Hide (1961) who proposed a criterion depending on the change in vorticity necessary 
for fluid filaments to cross the object, compared with the vorticity of the basic flow. 

t Current address: Aeronautical Research Associates of Princeton, 50 Washington Road, 
Princeton, N.J. 08540. 



176 P. J .  Mason and R. I .  Sylces 

It follows that a Taylor column should form when Y h  = h/DR B 1 (h is the height of 
the object and D the depth of the fluid). This is the criterion for virtually no flow over 
the obstacle and should be distinguished from the criterion for the flow to be nearly 
two-dimensional. The axial scale of a disturbance with horizontal scale L will be LIR 
and thus we require 9' = L/DR B 1 for nearly two-dimensional motion. 

Except for Stewartson & Cheng (1979) all the theoretical work in bounded systems 
(e.g. Jacobs 1964; Stewartson 1967; Ingersoll 1969) supposes YL B 1 but individual 
studies differ in the magnitude of and whether or not viscous effects are included 
or even dominate. By assuming YL B 1 these studies exclude inertial wave radiation 
and have essentially two-dimensional solutions. Stewartson & Cheng consider inviscid 
flow for YL = O( 1) and obtain a solution with a bimodal structure, one part columnar 
and the other lee wave in character. In unbounded systems, previous studies have 
considered inviscid flow over shallow topography at  arbitrary Rossby number 
(Queney 1947) or flow over ellipsoids a t  zero Rossby number (Grace 1926; Stewartson 
1953). Both studies give waves radiating to infinity but the former has a lee wave 
structure whilst the latter is columnar. 

In the laboratory experiments involving flow visualization the discussion of the 
results and data has centred on the 'Taylor-column' phenomenon. For Y h  and YL B 1 
these flows show Taylor-column disturbances extending parallel to the axis of rotation 
and in accordance with theoretical expectations they appear two-dimensional. When 
YL and y h  are O(1) the disturbance tilts with height and has been called a leaning 
Taylor column, see Hide & Ibbetson (1968) with an appendix by Lighthill (hereinafter 
both will be referred to as I). In the appendix Lighthill considers small-amplitude 
inertial waves far from the obstacle and obtains a value of the disturbance slope which 
agrees with experimental measurements near the obstacle. Stewartson & Cheng 
discuss this result and argue that, neglecting viscosity and nonlinearity, the distur- 
bance would produce an extensive lee wave field complicated by the boundedness of 
the system. They compare their own YL = O( 1) solution with the leaning disturbances 
and conclude that a more detailed investigation of the structure of the disturbance 
with the aid of numerical solutions is necessary to determine the roles of nonlinear 
and viscous effects. 

Also of relevance are previous laboratory experiments measuring the forces on 
obstacles moving horizontally in a rotating fluid (Mason 1975, 1977). In  the parameter 
range YL N 1 a large drag force occurs of magnitude comparable to that expected 
from the radiation of inertial waves. 

The main purpose of the present work is to provide more information on the nature 
of these leaning flow structures occurring when YL N 1.  We present some three- 
dimensional integrations of the Navier-Stokes equations with parameters similar to 
those used in laboratory experiments. In contrast to previous three-dimensional 
integrations by Huppert & Bryan (1976) we consider smaller values of YL at which 
the motion is distinctly three-dimensional. Our integrations enable the flow patterns 
to be seen in more detail than is possible in a laboratory experiment and the immediate 
impression is not of a tilting columnar disturbance but of a damped lee wave pattern 
extending away from the obstacle. To assist in interpreting the results we vary some 
parameters and make a comparison with the linear theory of Queney (1947) extended 
to take account of viscous effects. 

Apart from the numerical results we also present some new laboratory experiments. 
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The original purpose of this comparison between numerical and laboratory experi- 
ments was to check that coding errors were absent from the numerics and that numeri- 
cal errors were of the expected magnitude. In fact it did not prove possible to do this 
with useful accuracy owing to the limitations of the laboratory experiment. The 
experiment nevertheless provides confirmation that the numerical results are essen- 
tially correct. 

In  $ 2 we outline the numerical model and indicate the ranges of accessible para- 
meters. In $ 3  we present the extension of Queney’s (1947) theory to include viscous 
effects and In $ 4 we describe the laboratory apparatus. In  $ 8 we present the results 
and finally in $ 6 the conclusions. 

2. Numerical model 

Navier-Stokes equations for an incompressible rotating fluid, i.e. 
The equations of motion governing the integrations reported in this paper are the 

au 
- + U . v U  = - vp+2PA(U-U, )+Vv2U,  
at 

v . u  = 0, 

where u = (u, v, w) is the velocity, p is the perturbation dynamic pressure, v is the 
kinematic viscosity, and S2 is the basic rotation. u, = (U, 0,O) is the geostrophic wind, 
resulting from the background pressure gradient in the y direction. The geometry 
and co-ordinate system are illustrated in figure 1. The boundary conditions on the 
upper and lower surfaces are 

and u = 0 on z = h(x ,y ) .  

In  both horizontal directions the domain of integration is taken to be periodic. The 
reason for this choice, apart from its numerical simplicity, is the desire to avoid either 
side-wall boundary layers requiring spatial resolution or the uncertainty in implement- 
ing inflow/outflow boundary conditions. 

The numerical techniques we use to solve the equations have been discussed in 
Mason & Sykes (1978a, 1979) and will not be presented here. An important aspect of 
the numerical method concerns the approximate inclusion of the arbitrary no-slip 
surface z = h(x, y ) .  We use a Cartesian mesh and, in order for the method (which 
involves making the viscous stresses continuous at z = h(x, 9)) to be effectively second- 
order accurate, certain resolution requirements must be met. For the flows considered 
here with Rossby number R 5 1 the errors incurred near the surface are O(A/S) 
(Mason & Sykes 1978a), where A is the vertical mesh spacing and S = (v/S2)4 is the 
depth of the Ekman boundary layer. In practice we find the results to be essentially 
independent of A/& when A/S 5 4. It follows that if, in the numerical model, we can 
dispose n grid points up to the height h, of the topography, then S must be 2 3h0/n. 
In the present work n may be about 20 giving 6 2 h0/7. For Rossby numbers of unity 
and less this is the most stringent restriction on the model resolution. At larger Rossby 
numbers resolution is restricted by an upper limit to the Reynolds numbers which 
may be considered. For small-Rossby-number flows the restriction on 6/ho is only very 
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z = O  

F ~ a m  1. Illustrating the domain of the Navier-Stokes equation integrations. 

severe for precisely those cases when a numerical model which parametrized the 
Ekman boundary layers (e.g. Vaziri & Boyer 1971) would be appropriate. In  this 
paper some results are obtained slightly beyond the area of efficient application of 
the method in order to provide a check on the validity of the asymptotic assumptions 
involved in small-Rossby-number models. 

3. Theoretical considerations 

theory to include viscous effects. The linearized equations we are considering are 
Here we consider small-Rossby-number flow and extend Queney’s (1947) linear 

aU 
u O -+fv ax 

U0&u = -- 

= - g + v v 2 u ,  

$ + VVZV, 
av 

aw ap 
UOZ = --+vv2w, az 

au av aw 
ax ay a2 
-+-+- = 0. 

Since we are considering small-Rossby-number flow the lower boundary condition of 
Queney may be modified to include Ekman-boundary-layer pumping, i.e. 

where S = (2v/ f )i the Ekman-boundary-layer thickness. Solutions to Queney’a in- 
viscid problem show that for mal l  Rossby number the vertical wavenumber associated 
with a horizontal x direction wavenumber k is O(kR) ,  where R = Uok/f is the Rossby 
number. It follows that, provided the Ekman number E = v(k2 + P)/f (where I is a 
transverse horizontal wavenumber) is small enough to give a vertical decay scale larger 
than the horizontal wavelength we may neglect vertical derivatives in the viscous 
term. Thus instead of vV2u we have v(a2u/ax2 + a2u/ay2). 
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With this approximation, Fourier transformation of the equations with 

h = Re {h, exp [i(kz + l y ) ] }  

leads to solutions of the form u = Re {u, exp [i(kx + Zy + mz)]}. If we maintain that 
R 2 <  1 a n d E 4  lwefind 

i.e. m = AR-ihE, 

where A = (k2 + I?)+. Application of the boundary condition gives 

ikU,h, -ikfU,ho 
1 + (&E))’ 

k(R -iE) + 1 
A 

= A( 1 + (&E)*)’ w, = 

Z(R -iE) - k 
A , v, = iw, 210 = iw, 

It follows from the expressions for w, and p o  that the wave drag on the surface though 
changed by the Ekman boundary layer, is unaltered by the internal dissipation. The 
full extent of the viscous effects depend on the exact numerical values of Ekman 
number and we postpone further discussion until $ 5  where specifio examples are 
presented. 

In  these examples we have sought specifically to compare with the results of our 
numerical integrations of the Navier-Stokes equations. As the Navier-Stokes equation 
model has, for reasons noted above, been taken as horizontally periodic we have 
avoided obtaining an analytic solution to the linear problem and have been able to 
obtain the desired results numerically. We have taken the size of the domain and the 
form of the topography to be exactly as in the Navier-Stokes integrations and have 
then used a uniform mesh of grid points to  resolve the topography. A discrete fast 
Fourier transform was applied to the surface height field, and the required velocity 
fields were then numerically synthesized at the desired heights using the linear theory 
relations given above. A mesh of 64 x 64 grid points was used and from comparison 
with a test case of 128 x 128 grid points the results were judged essentially independent 
of resolution. Although this approach is very easy to implement the periodicity pre- 
cludes us obtaining results comparable with analytic theories for isolated obstacles 
such as Stewartson & Cheng (1979). 

4. Laboratory apparatus 
The essential purpose of the apparatus was to tow an object mounted on a thin 

horizontal plate through a tank of fluid which was otherwise in solid body rotation. 
The fluid was contained in a rectangular tank mowted on a diameter of a turntable. 
The length of the tank was 1-20 m and the width and depth 0.20 m. The depth of 
the working fluid was generally less than the depth of the tank and the upper surface 
to the fluid was free. The axis of the turntable was vertical to within 1 0-4 radians and 
values of angular rotation speed !2 were in the range 0-6-1.0 rad s-l and constant to 
within 0.01 %. The main errors in the experiment arose from spurious convection 
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A1 A 2  
Dimensional parameters 
a (rad 8-1) 0.5 0.5 
L (am) 2 2 
h, (om) 2 1 
D (am) 20 20 
U, (om s-l) 0.2 0.2 
v (cm* 8-1) 0.02 0 02 

Dimensionless parameters 
R = U0/4!2L 0.05 0.05 
Ef = ( ~ / 2 R D a ) f  7.1 x 10-3 7.1 x 
E~/R 0.14 0.14 
9 h  = h,/DR 2 1 
9~ = L/DR 2 2 
Rd = U,L/V 20 20 

TABLE 1. Basic parameters. 

A 3  

0.5 
2 
2 
20 
0.2 
0.1 

0.05 

0-31 
2 
2 
4 

1.6 x 10-9 

I 

B 

1.0 
2 
1 
3 
0.1 
0.01 

0.012 
2.4 x 10-o 
1.19 

27 
53 
20 

currents present in the fluid. These were minimized by extensive thermal insulation 
and the use of a thin film of oil on the upper surface of the fluid to prevent evaporation. 
The fluid was either water or, when a higher viscosity was desired, a water-glycerol 
mixture. The final magnitude of the background motions was 21 0.01 cm s-l. The 
thin horizontal plate had thickness 3 mm and was suspended from a framework by 
rods of 5 mm diameter mounted close to the edges of the tank. The objects used 
were sufficiently small for them to be effectively isolated from effects due to these 
rods and the sidewalls. The plate was long enough for the initial flow effects involving 
the formation of Ekman boundary layers to have subsided. This meant that the Rossby 
number based on the length of the plate had to be small. The other effect of the plate 
was a deflection of the flow through the mechanism of vortex compression (e.g. 
Batchelor 1967, p. 573). At smaller Rossby numbers than those for which data is 
presented, this effect necessitated the use of a thinner horizontal plate. As discussed 
in Mason (1975), effects due to the parabolic shape of the free upper surface of the 
liquid should be negligible. 

The flow visualization was achieved by means of the well-known Baker (1966) 
technique employing the pH indicator thymol blue. Wires generating the pH change 
were attached to the framework supporting the horizontal plate and located up- 
stream of the objects. Two 35 mm cameras were attached to the moving framework 
to photograph from above and from the side. 

5. Results 
In all the results presented, both numerical and experimental, we have adopted a 

standard form of topography. We have chosen a smoothly shaped obstacle to avoid 
both separation effects from sharp edges in the laboratory studies, and also numerical 
problems near sharp corners in the integrations. The height of the topography is 

h = I+, cos2 [ 2L (z2 + y2)i-j for x2+ y2 < LZ, 
?l 
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FIGTJRE 2. Superposition of experimental dye traces and computed trajectories 
from the numerical integration of case A 1 (see table 1). 

h = 0 for x2+y2 2 L2. The relative size of the computational domain was 10L in the 
x-direction and 7.5L in the y-direction. This was large enough to effectively isolate 
the topography. 

(a) Inertial-wave regime 

First we illustrate a flow typical of a so-called leaning Taylor column. A laboratory 
and a numerical experiment have been performed with the same basic parameters; 
these are given in table 1 case A 1. The Rossby number is small and YL, which is essen- 
tially the ratio of the vertical wavelength of the inertial waves to the depth of the 
container, is order unity. This and other parameters are typical of those used in 
previous experimental work such as I. 

Figure 2 shows a comparison between the experimental dye observations and the 
numerical results. Starting at the upstream coordinates of the vertical dye-generation 
wire, trajectories have been computed from the steady-state numerical velocity field 
(by the method described in Mason & Sykes 1979) and superimposed onto a photo- 
graph of the experimental dye release. The comparison is difficult because although the 
initial co-ordinates are upstream of the centre of the obstacle in both sets of trajectories, 
small spurious motions in the experiment cause the dye to shift sideways slightly, into 
different parts of the velocity field, with consequent increasing errors. By calculating 
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X ( b )  
FIQURE 3(a, b ) .  See caption on p. 183. 

trajectories using the numerical results from different initial positions, it has been 
ascertained that errors due to the spurious lateral displacements in the laboratory 
study are typically of the same magnitude as the differences visible in the comparison. 
However it is clear that there is good agreement in the character of the flow. The dis- 
turbance is seen to decay both with height and in the downstream direction. With 
this type of flow visualization the lee wave character of the flow is fairly evident but 
in previous work such as I the dye sheets used did not give such a clear picture. 

The example we have chosen has a slope of unity and a moderate amount of damping. 
To indicate the importance and role of nonlinearity and viscosity we have undertaken 
two further integrations in which only one parameter has been varied. In case A 2 we 
have reduced the height of the topography by a factor of two and in case A 3 we have 
increased the viscosity by a factor of five. As described in 0 3 we have also undertaken 
linear theory calculations appropriate to these cases. 

Rather than directly discuss the vertical variations of the flow seen in figure 2 we 
proceed with an inspection of some horizontal sections of the flow field. Firstly, in 
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FIGURE 3. Results obt,ained from the numerical integration of case A 1. Horizontal sections a t  
a height z = h, + 36 where 6 = ( v /n )* .  (a) Horizontal velocity vectors. (b) Vertical velocity field. 
The contour interval is 0.015 cm 8-1 and the dashed lines denote negative values. (c) Longitu- 
dinal velocity component. The contour interval is 0.02 cm 8-1 and the undisturbed value in the 
field is 0.2 cm 8-1. The central feature is a minimum and the features either side maxima. (d) 
Transverse velocity component; note that owing to a plotting error the sign of this field has 
been reversed. The contour interval is 0.01 4 cm s-l and dashed lines denote negative values. 

figures 3 ( a d )  we give a complete description of the flow field a few Ekman-layer depths 
above the top of the obstacle. Figure 3 (a) illustrates the significant deflection which 
occurs in the horizontal velocity flow vectors; the deflection is also evident in the 
vertical velocity field which is seen to be twisted out of alignment with the undisturbed 
flow. The peak magnitude of the vertical velocity is 0.15 cm s-l and comparable with 
uo8ho/8z. We thus conclude, in agreement with the implications of the trajectories 
in figure 2, that the vertical velocity at  this level arises mainly from the observed 
horizontal flow vectors being displaced over the topography. Figure 3(c) shows the 
longitudinal velocity field; this is quite different from that in a non-rotating flow and 
shows a minimum over the topography with maxima to  the side. This structure 
follows from continuity considerations involving mainly the transverse velocities. 
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FIGURE 4. Results obtained from the numerical integration of case A 1.  Horizontal sections 
at a height z = &D. (a) Transverse velocity component; note that owing to B plotting error 
the sign of this field has been reversed. The contour interval is 0.008 cm B-1. (b)  Vertical velocity 
component. The contour interval is 0.008 cm 5-1. Dashed lines denote negative values. 

Over the topography the transverse velocity structure takes the form implied by 
vortex compression and subsequent expansion. As the flow ascends the topography, 
the vorticity 8vlax is negative and as it descends avlax is positive. Apart from this 
structure in the vicinity of the topography, other weak longer length scale features 
are evident in the rest of the domain. As we shall see below, these features appear to 
be a consequence of reflection from the upper boundary. 

Figures 4(a, b) show horizontal sections of the transverse and vertical velocity 
components a t  z = i D .  At this height the fields show the disturbances spreading and 
extending downstream in a wavelike fashion. The peak velocities are roughly half 
t hxe  occurring just above the topography. As before the fields contain weak features 
reflected from the upper boundary. Figures B(a, b) show horizontal sections of the 
longitudinal and transverse velocity at x = D. Here of course the vertical velocity is 
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FIGURE 5. Results obtained from the numerical integration of case A 1. Horizontal seotions 
at  z = D. (a) Longitudinal velocity component. The contour interval is 0.02 om s-l and the 
undisturbed value in the field is 0-2 cm s-l. The central feature is a minimum and the features 
to the side are maxima. (b) Transverse velocity component ; note that owing to a plotting error 
the sign of this field has been reversed. The contour interval is 0*009cm~-~ .  Dashed lines 
denote negative values. 

zero. The transverse velocity shows wavelike features, with wavelength roughly two 
obstacle diameters, extending around the domain. The longitudinal velocities take 
the form implied by continuity. The magnitude of the transverse velocity field is 
essentially the same as at  z = i D  and it is these long length scale features which were 
seen, remote from the topography, in the fields at lower levels. The form of these weak 
long length scale disturbances is difficult to ascertain from sections involving the 
main topographic disturbance, and we thus present a longitudinal section one object 
diameter to the side of the base of the obstacle. Figure 6 illustrates the vertical velocity 
field in such a section taken on the side of the topography away from the flow deflection. 
The contour interval is 0.002 cm s-l and indicates the small amount of energy present 
in motion on this scale. The flow structure clearly indicates that the motion is not 
two-dimensional and suggests a standing wave present in our domain. 
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x o  

FIGURE 6. Results obtained from the numerical integration of case A 1. Vertical section in 2, z 
plane of vertical velocity fields. The field is located at y = + 6 cm, where y = 0 is at the centre 
of the topography. The contour interval is 0.002 cm s-1 and dashed lines denote negative values. 
Note that the vertical scale is non-uniform and corresponds with equal spacing in the compu- 
tational mesh; actual heights are indicated. 
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FIQURE 7. Results from inviscid linear theory for basic parameters corresponding to oase A 1. 
A horizontal section of the vertical velocity field at a height z = +D is shown. The contour 
interval is 0.02 cm s-l. 

The vertical wavenumber m associated with horizontal wavenumber was seen in 
$3  to  be m = AR. If we consider the numbers involved in the present example we find 
that a wavelength of one object diameter, 4 cm, gives a wavenumber k = 2n/4 and 
Rossby number R = u,, kl f = 0.3. The vertical wavelength for such a mode is thus 
N 40 and corresponds with the changes in structure with height which we have seen 
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FIGURE 8. Results from viscous linear theory for case A 1 at a height z = )D. (a) Vertiwl 
velocity field. Contoiw interval 0.01 cm s-*. (b)  Transverse velocity field. Contour interval 
0.01 cm s-l. 

in the main obstacle disturbance. For a scale of two object diameters, 8 cm, the 
Rossby number is N- 0.15 and the vertical wavelength thus about 2D. This is con- 
sistent with our observation of half a wavelength in a standing wave pattern. On 
longer scales we would expect the motion to be two-dimensional in form, with the 
vertical velocity decaying linearly with height from a value above the lower boundary 
layer to zero at  z = D.  However, in the examples we have considered the energy in 
such scales is too small to be separately identified. 

We have taken the fields at z = +D as convenient for a comparison with linear theory. 
In figure 7 we show the result of an inviscid calculation of the vertical velocity a t  this 
height. It is evident that at this height the periodicity of the domain is just beginning 
to affect the fields and many small-scale features are present. The peak velocity implied 
by the linear theory is twice that seen in the integrations but there is some similarity 
in the phase of the main features. In figures 8 (a, b)  we show the result of the viscous 
linear theory calculation. The vertical velocity field in figure 8(a) is quite different 
from the inviscid case; there is a small asymmetry and many small-scale features are 
removed. It should be compared with figure 4 ( b )  which shows the result from the 
integration. The peak amplitude in the theoretical calculation is 0.08 cm s-l and is 

7 F L M  111 



188 P .  J .  Mason and R. I .  Sykes 

U J ~ ' " ' " ' " '  ' 
I / c 

X 

FIGURE 9. Results obtained from the numerical integration of case A 2. The topography has 
half the height of case A 1. Horizontal sections at, z = 40. (a) Transverse velocity component; 
note that owing to a plotting error the sign of this field has been reversed. The contour interval 
is 0.0038 cm s-1. (b)  Vertical velocity component. The contour interval is 0,0036 cm s-l. Dashed 
lines denote negative values. 

in somewhat fortuitous exact agreement with the Navier-Stokes integration. The 
main differences are the large asymmetry and larger amplitude of the first downstream 
positive maximum in the integration. Differences between the transverse velocity 
field in the theory and in the integrations are of a similar character. 

Although there are reflections from the top boundary the most likely cause of the 
differences, and the asymmetry in particular, is nonlinearity. We therefore conducted 
the integration A 2 with the topographic height halved but otherwise identical to 
case A 1. Figures 9 (a, b)  show the vertical velocity and transverse velocity fields for 
this integration (A 2) a t  the height z = QD. The flow is seen to be much closer to the 
linear theory; the asymmetry is reduced and relative magnitude of the features is 
closer. The peak amplitudes are roughly halved, maintaining agreement with linear 
theory. Weak, long length scale features reflected from the top boundary are still 
evident . 
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From these results we conclude that the flow structure contains significant non- 
linear effects. On the other hand the dominant dynamics, as revealed by the ability 
of linear theory to describe aspects of the flow, is that of inertial wave radiation. When 
linear theory is compared with the integrations at heights other than z = SD it is 
found that below z = SD agreement is as good or better than at  z = 4 0 ,  whilst above 
z = IJD agreement is less good. This is of course an inevitable and trivial result of 
comparing the bounded integrations with unbounded theory. The reason for the 
reasonable agreement up to z = aD is simply that viscosity damps out most of the 
disturbance before it is reflected at  the upper boundary. Without viscosity we would 
obtain a complex lee wave structure of the type described by Stewartson & Cheng 
(1979). We thus proceed to consider the role of viscosity in more detail. 

In both the examples A 1 and A 2 the effect of viscosity is to reduce the amplitude 
of the disturbance a t  z = SD to roughly one half of that near the lower boundary. 
Above z = SD the transverse velocity amplitude is nearly independent of height, 
whilst the vertical velocity decays nearly linearly with height. In  the viscous linear 
theory the decay rate decreases with height as longer wavelengths become dominant. 
We saw in fj 3 that the rate of exponential decay of a particular wavenumber is AE, 
i.e. v P / f  in dimensional terms. If we take the typical scale of the topography in the 
examples above, i.e. A = n/L, we find (f /v) A S  = 12.9 cm, i.e. E 4 0 .  This is consistent 
with the form of the observed results but we must note the implication of the cubic 
scale dependence. A scale of +L will be rapidly attenuated whilst a scale of 2L is 
hardly affected in the depth of our domain. It follows that the reflection of some 
energy from the upper boundary is difficult to avoid. Fourier analysis shows significant 
energy on the scale of our domain and implies that to  effectively eliminate these re- 
flections we would need a hundred-fold increase in either the depth or the viscosity. 
An increase in the horizontal size of the domain would not alter the extent of reflec- 
tions but would help to distinguish upstream and downstream effects. 

To provide confirmation of the ability of the viscous linear theory to account for 
the observed amplitudes, we have conducted a further numerical integration A 3. 
In this we have increased the viscosity of case A 1 by a factor of 5 ,  other parameters 
remaining fixed. Figure 10 shows the resulting vertical velocity field at z = SD. The 
main differences from case A 1 are the increase in length scale of the disturbance and 
the reduction in amplitude by a factor of roughly three. Figure 11 shows the corres- 
ponding viscous linear theory result. The amplitude is still in good agreement and the 
differences including the asymmetry are much as with case A 1. Above z = SD the 
behaviour is of the same character as in cases A 1 and A 2, but the motions roughly 
one third of the magnitude. 

At this point we return to the question of the slope of the disturbances. Hide & 
Ibbetson (1968) measured the slope of the position of the maximum upward displace- 
ment of their dye sheet. This measurement was made near the obstacle and a value of 
1.54R (where R = (u/R) d and d is diameter of their sphere) was obtained. We made 
similar measurements near the obstacle and obtained a similar result. However as 
indicated in the discussion above, the vertical variation changes markedly with height 
becoming slight as z = D is approached. 

In this respect our numerical studies simply confirm Stewartson & Cheng’s (1979) 
opinion that a complex lee wave pattern should result. 

The above results show how, even though significant effects due to nonlinearity and 
7-2 
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FIGURE 10. Results obtained from the numerical integration of case A 3. The viscosity is five 
times the value of case A 1.  Horizontal section at z = J D  of the vertical velocity component. 
The contour interval is 0.0028 cm 5-1 and dashed lines denote negative va.lues. 

X 

FIGURE 11. Results from viscous linear theory for the case A 3, vertical velooity component at 
z = &D. Contour interval 0.002 cm s-l and dashed lines denote negative valuee. 

boundedness are present, linearized unbounded inertial waves account for the dominant 
flow amplitudes and their phase variation with height. For this reason we would expect 
the perturbation pressure force arising from this wave radiation to accord with linear 
theory. This expectation is borne out in table 2 where drag forces from the numerical 
integrations and from linear theories are given. The linear theories only give a drag 
force in the basic flow direction and the viscous theory shows that Ekman boundary 
pumping reduces this drag. The internal dissipation had no effect on the drag given by 
the linear theory. In table 2 we see that for cases A 1 and A 2 the numerical integrations 
give small changes in viscous stress and the 2 direction drags compare favourably 
with linear theory. This is true even when the topographic slope is altered between 
cases A 1 and A 2. In  the more nonlinear case A 1,  the observed drag is smaller than 
the linear prediction. This result accords with experimental measurements of Mason 
(1976, 1977) and our observation of a wavelike structure confirms his conjecture that, 
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Case 

A 1  A 2  
Undisturbed viscous force 

In x direction 6.53 x 10-8 6-53 x 
In y direction 5.27 x lo-* 5.27 x 

In x direction 6.48 x 6.50 x 
In y direction 5.26 x 5.27 x 

Final viscous fome 

Perturbation pressure force on obstacle 
In x direction 6.0 x 10-9 2.2 x 10-0 

In y direction 3.5 x lo-@ 0.4 x 10-0 

Calculated pressure force in z direction due 

Viscous linearized inertial wave radiation 

Perturbation pressure force on obstacle 

b.6 x lo-g 

7.5 x 10-9 

2.2 x 

1.9 x 10-9 
to inviscid linearized inertial wave radiation 

scaled by 2hzpU,v 
In x direction 0.40 0.20 
In y direction 0.23 0.04 

TABLE 2. Net forces in MKS units 

A 3  

1-40 x 10-7 
1-33 x 10-7 

1.36 x 10-7 
1.31 x 10-7 

7-3 x 10-9 
1-7  x 10-@ 

8.6 x 1O-O 

6-4 x 10-@ 

0.49 
0.11 

1 

B 

3.13 x 
2.88 x 

3.11 x 
2.85 x 

2.5 x 10-9 
4.9 x lo-@ 
- 

- 

0.35 
0.68 

X 

FIGURE 12. A projection onto a horizontal plane of computed flow trajectories at 
z = IDinoaseB. 

inertial wave radiation is the physical mechanism behind this drag. In accord with 
these experimental measurements but unlike the linear theory we also obtain a signi- 
ficant transverse forcep,. In case A 1 py is - O.f3px but in A 2 it is only 0.18px, strongly 
indicating a nonlinear origin related to the deflection of the undisturbed flow. 

In case A 3 the Reynolds number is low enough to give significant viscous pressure 
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/ X 

Y 

( b )  X 

FIQURE 13. Results ohtained from the numerical integration of case B. Horizontal sections of 
vertical velocity field at (a) z = h,+3S and ( b )  z = fD. The contour intervals are 1.7 x lo-* 
and 0.9 x 

effects and we cannot make definite statements regarding the forces obtained. The 
forces are however fairly consistent with those in cases A 1 and A 2. 

cm s-1 respectively; dashed lines denote negative values. 

( b )  Two-dimensional flow regime 

For comparison with the inertial wave flows, and as a check on the application of 
asymptotic theory, in this section we illustrate an example ( B )  of two-dimensional 
flows which occur when SP, 9 1. The parameters involved are given in table 1. In 
example B, viscous and inertial effects are comparable. The ratio of the spin-up time 
of the flow to the advection time E t / R  = 1.19, cf. 0.14 in the inertial wave example 
A 1 in which internal dissipation was more important. For comparison with previous 
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results and with the experiments cited below, figure 12 shows a view from above of 
some flow trajectories at  z = 40. It is clear that 9, is not large enough for the flow 
to be completely blocked but a strong deflection with much diminished flow above the 
obstacle is evident. Figures 13(a, b) show the vertical velocity fields just above the 
topography and at z = $0. The form of these fields is quite complex, reflecting the 
marked horizontal flow distortions. The two-dimensionality is seen to be fairly exact 
and even occurs in the zero contours which pick out weak features remote from the 
topography. This provides strong support for the use of asymptotic theory with 
YL $ 1 at these parameters (YL = 53) and the form of our results accord with those of 
Vaziri & Boyer ( 1971) who have made a numerical study of these asymptotic equations. 

In table 2 we present the forces arising in this integration. For a Taylor column 
with Y h  % 1 and 9, B 1 theoretical expectations are for a transverse force equal to 
2QpuB, where B is the volume of the topography. Here p y  is equal to 0.68 of this 
value and is consistent with the incomplete flow blocking. pz is about half this value 
and probably due to Ekman-layer pumping (Mason & Sykes 19783). Unfortunately 
theoretical estimates of drag due to this mechanism are only available for 9* 1 
and we can only note that it is much less than the 9 h  < 1 theory estimates. 

6. Conclusions 
We have shown the utility of a numerical model in studying rapidly rotating flow 

over topography. In  an example with Y h  = 27 and yL = 53 we have confirmed that 
two-dimensional asymptotic theory is applicable. In  another example with 9 h  = 2 
and 9’ = 2 we have considered flow typical of a laboratory experiment on ‘leaning 
Taylor columns’. The complex flow a t  the later parameters shows a number of identi- 
fiable features. 

The dominant part of the flow has the character of a lee wave system extending 
from the topography. Apart from a flow asymmetry the amplitude and phase of the 
disturbance are similar to those given by viscous linear theory. Such agreement would 
not be expected to hold for obstacles with greater slopes than the value of unity 
considered. The pronounced flow asymmetry reflects the large flow vector deflection 
and decreases when the obstacle slope is reduced. 

For the parameters we have considered the flow is damped significantly by viscosity 
and the dominant flow structure occurs in the lower half of the domain. This accounts 
for Lighthill’s successful prediction of the downstream tilt of the structure in the 
appendix to I using an unbounded wave radiation theory. The leaning structure is a 
spreading wave field rather than columnar. In  the upper half of the domain the flow 
structure is strongly affected by the reflection from the upper boundary. This gives 
rise to  a weak wave pattern filling the entire domain. A consideration of the scale 
dependence of the dissipation of inertial waves shows that such reflections are difficult 
to avoid in either laboratory or numerical studies. In the examples we have considered, 
the motions appear either entirely two-dimensional (YL = 53) or entirely wavelike 
(YL = 2). At intermediate parameters we would expect a structure exhibiting a basic 
two-dimensionality but with greater vertical variations than that seen in our YL = 53 
example. 

By showing that the YL = 9, = 2 example was dominated by inertial waves we 



194 P. J .  Mason and R. I. Sykes 

have confirmed the conjecture (Mason 1975, 1977) that the drag forces a t  these pare- 
meters arise from inertial wave radiation. 

Finally we note that we have shown that Stewartson & Cheng’s (1979) conclusion 
that nonlinearity and viscosity are important in laboratory flows, is correct. However 
in spite of these effects, when examined in detail, the flows for YL = O(1) do show 
features reminiscent of Stewartson & Cheng’s solution. The ‘column-like’ part of 
their solution seems to correspond to  the two-dimensional motion seen at YL large 
and the wavelike part to the inertial waves we see at Y;, N 1. We can thus hypothesize 
that for an isolated obstacle in a less viscous system, the range of length scales affecting 
the flow would be larger, and both the two-dimensional and the wavelike parts would 
be simultaneously evident. To obtain such a flow it seems that less viscosity than that 
typical of either a laboratory system or our numerical integrations is needed. 

The authors wish to express their gratitude to Mr W. D. N. Jackson who built the 
experimental apparatus and conducted the laboratory experiments. The authors are 
also grateful to Dr R. Hide for his support and to Dr M. E. McIntyre for stimulating 
discussions at  the inception of the work. 
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